Untuk mempelajari fungsi eksponensial, pertama kita harus mendefinisikan apa yang dimaksud dengan bentuk eksponensial ax dengan x adalah sebarang bilangan real. Dalam pembahasan ini kita sudah tahu definisi ax untuk a > 0 dan x adalah bilangan rasional, yaitu
Akan tetapi bagaimana jika x adalah bilangan irasional? Berapakah nilai dari 5√3 atau 2π? Untuk mendefinisikan ax ketika x adalah bilangan irasional, kita dekati x dengan menggunakan bilangan rasional.
Misalkan, karena
merupakan bilangan irasional, kita dapat mendekati a√3 dengan barisan pangkat bilangan rasional berikut:
Secara intuitif, kita dapat melihat bahwa pangkat rasional dari a akan mendekat dan terus mendekat ke a√3. Dapat ditunjukkan dengan menggunakan matematika lanjut bahwa terdapat tepat satu bilangan yang didekati oleh barisan tersebut. Kita definisikan a√3sebagai bilangan ini.
Misalkan, dengan menggunakan kalkulator, kita dapat menghitung
Semakin banyak desimal yang kita gunakan untuk menentukan √3 dalam perhitungan, maka kita akan mendapatkan pendekatan yang semakin baik.
Definisi Fungsi Eksponensial
Fungsi eksponensial f dengan basis a dinotasikan dengan
di mana a > 0, a ≠ 1, dan x merupakan sebarang bilangan real.
Kita menganggap bahwa a ≠ 1 karena fungsi f(x) = 1x = 1 merupakan fungsi konstan. Berikut ini beberapa contoh fungsi eksponensial:
Contoh 1: Menentukan Nilai Fungsi Eksponensial
Gunakan kalkulator untuk menentukan nilai masing-masing fungsi berikut pada x yang diberikan.
- f(x) = 2x pada x = –3,1
- f(x) = 2–x pada x = π
- f(x) = 0,6x pada x = 3/2.
Pembahasan
- f(–3,1) = 2–3,1 ≈ 0,1166291
- f(π) = 2–π ≈ 0,1133147
- f(3/2) = (0,6)3/2 = 0,4647580
0 Comments:
Posting Komentar